Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah Ali, ${ }^{a}$ Nur Ashikin Khamis, ${ }^{\text {a }}$ W. Jefri Basirun ${ }^{\text {a }}$ and Bohari M. Yamin ${ }^{\text {b }}$
${ }^{\text {a Department }}$ of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.076$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

\{4-Chloro-2'-[(3-methoxy-2-oxidophenyl)-methylidene]benzohydrazido\}(pyridine)copper(II)

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$, the hydrazide ligand chelates to the central Cu atom in an O, N, O^{\prime}-tridentate manner and the pyridine molecule coordinates through the N atom, forming a distorted square-planar geometry. The compound has a trans configuration with cis angles about the Cu atom between 81.1 (2) and 95.7 (2) ${ }^{\circ}$. The molecule is discrete, with no significant intermolecular interactions.

Comment

It is known that tetracoordinate Schiff base metal complexes may adopt trans or cis planar or tetrahedral geometry. $\left[\mathrm{Cu}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$ (Elmali et al., 2000) and $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}\right)_{2}\right]$ (Zhang et al., 2001) are examples of cis- and trans- $\mathrm{CuN}_{2} \mathrm{O}_{2}$ coordination geometry, respectively.

(I)

The present compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{3}\right)\right]$, (I), shows a trans- $\mathrm{CuN}_{2} \mathrm{O}_{2}$ configuration in a distorted square-planar environment (Fig. 1), as in the compound above. However, the ligand is chelated to the Cu atom in an O, N, O^{\prime}-tridentate manner and the pyridine molecule coordinates through the N atom. The cis angles lie between 81.1 (2) and 95.7 (2) ${ }^{\circ}$ and show more variation than in $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}\right)_{2}\right]$, which is centrosymmetric with cis $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$ and $\mathrm{O} 1^{\prime}-\mathrm{Cu} 1-\mathrm{N} 1$

Figure 1

 probability displacement ellipsoids.

Received 7 June 2004
Accepted 14 June 2004
Online 26 June 2004
angles of 88.91 (13) and $91.09(13)^{\circ}$. The whole molecule is not planar, with a maximum deviation at C15 of 0.483 (2) \AA from the mean plane. The maximum deviation among the atoms $\mathrm{Cu} 1, \mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 2$ and N 3 is for atom O 2 of 0.265 (1) \AA, in such a way that the $\mathrm{Cu} 1-\mathrm{O} 1$ bond length $[1.93$ (11) \AA] is slightly longer than the $\mathrm{Cu} 1-\mathrm{O} 2$ bond length $[1.88$ (11) \AA], although in agreement with other square-planar complexes, such as $\left[\mathrm{Cu}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right][\mathrm{Cu}-\mathrm{O}=1.88$ (4) and 1.88 (3) $\AA ; \mathrm{Cu}-$ $\mathrm{N}=1.93$ (4) and 1.94 (4) \AA; Elmali et al., 2000] and centrosymmetric $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}\right)_{2}\right][\mathrm{Cu}-\mathrm{O}=1.88$ (3) and $\mathrm{Cu}-\mathrm{N}=$ 2.00 (3) Å; Zhang et al., 2001]. The structural dimensions of the ligand are normal (Allen et al., 1987; Orpen et al., 1989). No significant intermolecular interactions are observed in the crystal structure.

Experimental

The title complex was synthesized by the template condensation of 2-hydroxy-3-methoxybenzaldehyde $(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$ and 4-chlorobenzhydrazide $(0.34 \mathrm{~g}, 1.0 \mathrm{mmol})$ with copper acetate dihydrate ($0.34 \mathrm{~g}, 0.5 \mathrm{mmol}$) by refluxing and stirring in ethanol for 5 h . The dark-blue solid was filtered off and recrystallized from pyridine.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.607 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=445.35$
Triclinic, $P \overline{1}$
$a=7.6672$ (6) \AA
$b=8.3085$ (7) \AA
$c=14.6960(12) \AA$
$\alpha=97.960(2)^{\circ}$
$\beta=93.595(2)^{\circ}$
$\gamma=95.405(1)^{\circ}$
$V=920.31(13) \AA^{3}$
Mo $K \alpha$ radiation
Cell parameters from 7701 reflections
$\theta=2.4-27.0^{\circ}$
$\mu=1.36 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, dark blue
$0.41 \times 0.36 \times 0.24 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.592, T_{\text {max }}=0.721$
10319 measured reflections

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0446 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$	$+0.1871 P]$
$w R\left(F^{2}\right)=0.076$	\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.06$	$(\Delta / \sigma)_{\max }<0.001$
3984 reflections	$\Delta \rho_{\max }=0.25 \mathrm{e} \mathrm{e}^{-3}$
255 parameters	$\Delta \rho_{\min }=-0.23$ e \AA^{-3}
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: $0.0119(18)$

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on the parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-03-0145 and 09-02-02-993, respectively.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Elmali, A., Elerman, Y. \& Svoboda, I. (2000). Acta Cryst. C56, 423-424.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-3.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhang, L. Z., Bu, P.-Y,, Wang, L.-J. \& Cheng, P. (2001). Acta Cryst. C57, 11661167.

