metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hapipah Ali,^a Nur Ashikin Khamis,^a W. Jefri Basirun^a and Bohari M. Yamin^b*

^aDepartment of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia, and ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.002 Å R factor = 0.026 wR factor = 0.076 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

{4-Chloro-2'-[(3-methoxy-2-oxidophenyl)methylidene]benzohydrazido}(pyridine)copper(II)

In the title compound, $[Cu(C_{15}H_{11}ClN_2O_3)(C_5H_5N)]$, the hydrazide ligand chelates to the central Cu atom in an O,N,O'-tridentate manner and the pyridine molecule coordinates through the N atom, forming a distorted square-planar geometry. The compound has a *trans* configuration with *cis* angles about the Cu atom between 81.1 (2) and 95.7 (2)°. The molecule is discrete, with no significant intermolecular interactions.

Comment

It is known that tetracoordinate Schiff base metal complexes may adopt *trans* or *cis* planar or tetrahedral geometry. $[Cu(C_{20}H_{12}Br_2N_2O_2)]$ (Elmali *et al.*, 2000) and $[Cu(C_{15}H_{22}NO)_2]$ (Zhang *et al.*, 2001) are examples of *cis*- and *trans*-CuN₂O₂ coordination geometry, respectively.

The present compound, $[Cu(C_{20}H_{16}ClN_3O_3)]$, (I), shows a *trans*-CuN₂O₂ configuration in a distorted square-planar environment (Fig. 1), as in the compound above. However, the ligand is chelated to the Cu atom in an *O*,*N*,*O'*-tridentate manner and the pyridine molecule coordinates through the N atom. The *cis* angles lie between 81.1 (2) and 95.7 (2)° and show more variation than in $[Cu(C_{15}H_{22}NO)_2]$, which is centrosymmetric with *cis* N1–Cu1–O1 and O1'–Cu1–N1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved The molecular structure of the title compound, (I), shown with 50% probability displacement ellipsoids.

Online 26 June 2004 nar

Received 7 June 2004 Accepted 14 June 2004 angles of 88.91 (13) and 91.09 (13)°. The whole molecule is not planar, with a maximum deviation at C15 of 0.483 (2) Å from the mean plane. The maximum deviation among the atoms Cu1, O1, O2, N2 and N3 is for atom O2 of 0.265 (1) Å, in such a way that the Cu1–O1 bond length [1.93 (11) Å] is slightly longer than the Cu1–O2 bond length [1.88 (11) Å], although in agreement with other square-planar complexes, such as $[Cu(C_{20}H_{12}Br_2N_2O_2)] [Cu–O = 1.88 (4) and 1.88 (3) Å; Cu–$ N = 1.93 (4) and 1.94 (4) Å; Elmali*et al.*, 2000] and centro $symmetric <math>[Cu(C_{15}H_{22}O)_2] [Cu–O = 1.88 (3) and Cu–N =$ 2.00 (3) Å; Zhang *et al.*, 2001]. The structural dimensions of the ligand are normal (Allen *et al.*, 1987; Orpen *et al.*, 1989). No significant intermolecular interactions are observed in the crystal structure.

Experimental

The title complex was synthesized by the template condensation of 2hydroxy-3-methoxybenzaldehyde (0.30 g, 1.0 mmol) and 4-chlorobenzhydrazide (0.34 g, 1.0 mmol) with copper acetate dihydrate (0.34 g, 0.5 mmol) by refluxing and stirring in ethanol for 5 h. The dark-blue solid was filtered off and recrystallized from pyridine.

Crystal data

Z = 2
$D_x = 1.607 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 7701
reflections
$\theta = 2.4-27.0^{\circ}$
$\mu = 1.36 \text{ mm}^{-1}$
T = 273 (2) K
Block, dark blue
$0.41 \times 0.36 \times 0.24 \text{ mm}$
3984 independent reflections
3772 reflections with $I > 2/s(I)$
$R_{\rm int} = 0.017$
$\theta_{\rm max} = 27.0^{\circ}$

Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.592, T_{max} = 0.721$ 10319 measured reflections

$\theta_{\rm max} = 27.0^{\circ}$	
$h = -9 \rightarrow 9$	
$k = -10 \rightarrow 10$	
$l = -18 \rightarrow 18$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0446P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 0.1871P]
$wR(F^2) = 0.076$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3984 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
255 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0119 (18)

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on the parent C atoms, with C-H = 0.93-0.96 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for research grants IRPA Nos. 09-02-03-0145 and 09-02-02-993, respectively.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–3.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167.